Aria Gray Aria Gray
0 Course Enrolled • 0 Course CompletedBiography
높은통과율Professional-Machine-Learning-Engineer높은통과율시험대비공부문제덤프공부문제
Google인증 Professional-Machine-Learning-Engineer시험을 패스하기 위하여 잠을 설쳐가며 시험준비 공부를 하고 계신 분들은 이 글을 보는 즉시 공부방법이 틀렸구나 하는 생각이 들것입니다. Fast2test의Google인증 Professional-Machine-Learning-Engineer덤프는 실제시험을 대비하여 제작한 최신버전 공부자료로서 문항수도 적합하여 불필요한 공부는 하지 않으셔도 되게끔 만들어져 있습니다.가격도 착하고 시험패스율 높은Fast2test의Google인증 Professional-Machine-Learning-Engineer덤프를 애용해보세요. 놀라운 기적을 안겨드릴것입니다.
목표가 있다면 목표를 향해 끊임없이 달려야 멋진 인생이 됩니다. 지금의 현황에 만족하여 아무런 노력도 하지 않는다면 언젠가는 치열한 경쟁을 이겨내지 못하게 될것입니다. IT업종에 종사중이시라면 다른분들이 모두 취득하는 자격증쯤은 마련해야 되지 않겠습니까? Google인증 Professional-Machine-Learning-Engineer시험은 요즘 가장 인기있는 자격증 시험의 한과목입니다. IT업계에서 살아남으려면Fast2test에서Google인증 Professional-Machine-Learning-Engineer덤프를 마련하여 자격증에 도전하여 자기의 자리를 찾아보세요.
>> Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 <<
Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 덤프는 Google Professional Machine Learning Engineer 시험대비 최고의 자료
아무런 노력을 하지 않고 승진이나 연봉인상을 꿈꾸고 있는 분이라면 이 글을 검색해낼수 없었을것입니다. 승진이나 연봉인상을 꿈꾸면 승진과 연봉인상을 시켜주는 회사에 능력을 과시해야 합니다. IT인증시험은 국제적으로 승인해주는 자격증을 취득하는 시험입니다. Fast2test의Google인증 Professional-Machine-Learning-Engineer덤프의 도움으로 Google인증 Professional-Machine-Learning-Engineer시험을 패스하여 자격증을 취득하면 승진이나 연봉인상의 꿈이 이루어집니다. 결코 꿈은 이루어질것입니다.
최신 Google Cloud Certified Professional-Machine-Learning-Engineer 무료샘플문제 (Q206-Q211):
질문 # 206
You work for a retail company. You have been asked to develop a model to predict whether a customer will purchase a product on a given day. Your team has processed the company's sales data, and created a table with the following rows:
* Customer_id
* Product_id
* Date
* Days_since_last_purchase (measured in days)
* Average_purchase_frequency (measured in 1/days)
* Purchase (binary class, if customer purchased product on the Date)
You need to interpret your models results for each individual prediction. What should you do?
- A. Create a BigQuery table Use BigQuery ML to build a logistic regression classification model Use the values of the coefficients of the model to interpret the feature importance with higher values corresponding to more importance.
- B. Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model to a Vertex Al endpoint and enable feature attributions Use the "explain" method to get feature attribution values for each individual prediction.
- C. Create a BigQuery table Use BigQuery ML to build a boosted tree classifier Inspect the partition rules of the trees to understand how each prediction flows through the trees.
- D. Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model to a Vertex Al endpoint. At each prediction enable L1 regularization to detect non-informative features.
정답:B
질문 # 207
You are an ML engineer at a bank that has a mobile application. Management has asked you to build an ML-based biometric authentication for the app that verifies a customer's identity based on their fingerprint. Fingerprints are considered highly sensitive personal information and cannot be downloaded and stored into the bank databases. Which learning strategy should you recommend to train and deploy this ML model?
- A. Federated learning
- B. Data Loss Prevention API
- C. Differential privacy
- D. MD5 to encrypt data
정답:A
설명:
Federated learning is a machine learning technique that enables organizations to train AI models on decentralized data without centralizing or sharing it1. It allows data privacy, continual learning, and better performance on end-user devices2. Federated learning works by sending the model parameters to the devices, where they are updated locally on the device's data, and then aggregating the updated parameters on a central server to form a global model3. This way, the data never leaves the device and the model can learn from a large and diverse dataset.
Federated learning is suitable for the use case of building an ML-based biometric authentication for the bank's mobile app that verifies a customer's identity based on their fingerprint. Fingerprints are considered highly sensitive personal information and cannot be downloaded and stored into the bank databases. By using federated learning, the bank can train and deploy an ML model that can recognize fingerprints without compromising the data privacy of the customers. The model can also adapt to the variations and changes in the fingerprints over time and improve its accuracy and reliability. Therefore, federated learning is the best learning strategy for this use case.
질문 # 208
You need to use TensorFlow to train an image classification model. Your dataset is located in a Cloud Storage directory and contains millions of labeled images Before training the model, you need to prepare the data. You want the data preprocessing and model training workflow to be as efficient scalable, and low maintenance as possible. What should you do?
- A. 1 Create a Dataflow job that moves the images into multiple Cloud Storage directories, where each directory is named according to the corresponding label.
2 Reference tfds.fclder_da-asst.imageFclder in the training script.
3. Train the model by using Vertex AI Training with a V100 GPU. - B. 1 Create a Jupyter notebook that uses an n1-standard-64, V100 GPU Vertex Al Workbench instance.
2 Write a Python scnpt that copies the images into multiple Cloud Storage directories, where each directory is named according to the corresponding label.
3 Reference tf ds. f older_dataset. imageFolder in the training script.
4. Train the model by using the Workbench instance. - C. 1 Create a Dataflow job that creates sharded TFRecord files in a Cloud Storage directory.
2 Reference tf .data.TFRecordDataset in the training script.
3. Train the model by using Vertex Al Training with a V100 GPU. - D. 1 Create a Jupyter notebook that uses an n1-standard-64, V100 GPU Vertex Al Workbench instance.
2 Write a Python script that creates sharded TFRecord files in a directory inside the instance
3. Reference tf. da-a.TFRecrrdDataset in the training script.
4. Train the model by using the Workbench instance.
정답:C
설명:
TFRecord is a binary file format that stores your data as a sequence of binary strings1. TFRecord files are efficient, scalable, and easy to process1. Sharding is a technique that splits a large file into smaller files, which can improve parallelism and performance2. Dataflow is a service that allows you to create and run data processing pipelines on Google Cloud3. Dataflow can create sharded TFRecord files from your images in a Cloud Storage directory4.
tf.data.TFRecordDataset is a class that allows you to read and parse TFRecord files in TensorFlow. You can use this class to create a tf.data.Dataset object that represents your input data for training. tf.data.Dataset is a high-level API that provides various methods to transform, batch, shuffle, and prefetch your data.
Vertex AI Training is a service that allows you to train your custom models on Google Cloud using various hardware accelerators, such as GPUs. Vertex AI Training supports TensorFlow models and can read data from Cloud Storage. You can use Vertex AI Training to train your image classification model by using a V100 GPU, which is a powerful and fast GPU for deep learning.
References:
* TFRecord and tf.Example | TensorFlow Core
* Sharding | TensorFlow Core
* Dataflow | Google Cloud
* Creating sharded TFRecord files | Google Cloud
* [tf.data.TFRecordDataset | TensorFlow Core v2.6.0]
* [tf.data: Build TensorFlow input pipelines | TensorFlow Core]
* [Vertex AI Training | Google Cloud]
* [NVIDIA Tesla V100 GPU | NVIDIA]
질문 # 209
You work at a large organization that recently decided to move their ML and data workloads to Google Cloud. The data engineering team has exported the structured data to a Cloud Storage bucket in Avro format.
You need to propose a workflow that performs analytics, creates features, and hosts the features that your ML models use for online prediction How should you configure the pipeline?
- A. Ingest the Avro files into Cloud Spanner to perform analytics Use a Dataflow pipeline to create the features and store them in BigQuery for online prediction.
- B. Ingest the Avro files into BigQuery to perform analytics Use a Dataflow pipeline to create the features, and store them in Vertex Al Feature Store for online prediction.
- C. Ingest the Avro files into Cloud Spanner to perform analytics. Use a Dataflow pipeline to create the features. and store them in Vertex Al Feature Store for online prediction.
- D. Ingest the Avro files into BigQuery to perform analytics Use BigQuery SQL to create features and store them in a separate BigQuery table for online prediction.
정답:B
설명:
BigQuery is a service that allows you to store and query large amounts of data in a scalable and cost-effective way. You can use BigQuery to ingest the Avro files from the Cloud Storage bucket and perform analytics on the structured data. Avro is a binary file format that can store complex data types and schemas. You can use the bq load command or the BigQuery API to load the Avro files into a BigQuery table. You can then use SQL queries to analyze the data and generate insights. Dataflow is a service that allows you to create and run scalable and portable data processing pipelines on Google Cloud. You can use Dataflow to create the features for your ML models, such as transforming, aggregating, and encoding the data. You can use the Apache Beam SDK to write your Dataflow pipeline code in Python or Java. You can also use the built-in transforms or custom transforms to apply the feature engineering logic to your data. Vertex AI Feature Store is a service that allows you to store and manage your ML features on Google Cloud. You can use Vertex AI Feature Store to host the features that your ML models use for online prediction. Online prediction is a type of prediction that provides low-latency responses to individual or small batches of input data. You can use the Vertex AI Feature Store API to write the features from your Dataflow pipeline to a feature store entity type. You can then use the Vertex AI Feature Store online serving API to read the features from the feature store and pass them to your ML models for online prediction. By using BigQuery, Dataflow, and Vertex AI Feature Store, you can configure a pipeline that performs analytics, creates features, and hosts the features that your ML models use for online prediction. References:
* BigQuery documentation
* Dataflow documentation
* Vertex AI Feature Store documentation
* Preparing for Google Cloud Certification: Machine Learning Engineer Professional Certificate
질문 # 210
A technology startup is using complex deep neural networks and GPU compute to recommend the company's products to its existing customers based upon each customer's habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company's Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.
Senior managers are concerned about the complexity of the solution's resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.
Which architecture should be used to scale the solution at the lowest cost?
- A. Implement the solution using AWS Deep Learning Containers and run the container as a job using AWS Batch on a GPU-compatible Spot Instance
- B. Implement the solution using AWS Deep Learning Containers, run the workload using AWS Fargate running on Spot Instances, and then schedule the task using the built-in task scheduler
- C. Implement the solution using Amazon ECS running on Spot Instances and schedule the task using the ECS service scheduler
- D. Implement the solution using a low-cost GPU-compatible Amazon EC2 instance and use the AWS Instance Scheduler to schedule the task
정답:B
질문 # 211
......
Fast2test의Google인증 Professional-Machine-Learning-Engineer 덤프는 수많은 시험준비 공부자료 중 가장 믿음직합니다. Fast2test의 인지도는 업계에 널리 알려져 있습니다. Google인증 Professional-Machine-Learning-Engineer덤프로Google인증 Professional-Machine-Learning-Engineer시험을 준비하여 한방에 시험패스한 분이 너무나도 많습니다. Google인증 Professional-Machine-Learning-Engineer덤프는 실제Google인증 Professional-Machine-Learning-Engineer시험문제에 초점을 맞추어 제작한 최신버전 덤프로서 시험패스율이 100%에 달합니다.
Professional-Machine-Learning-Engineer완벽한 인증덤프: https://kr.fast2test.com/Professional-Machine-Learning-Engineer-premium-file.html
Google Professional-Machine-Learning-Engineer 시험을 합격하여 자격증을 손에 넣는다면 취직 혹은 연봉인상 혹은 승진이나 이직에 확실한 가산점이 될것입니다, Google인증 Professional-Machine-Learning-Engineer시험은 등록하였는데 시험준비는 아직이라구요, Google Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 믿고 애용해주신 분들께 감사의 인사를 드립니다, Fast2test에서 최고최신버전의Google인증Professional-Machine-Learning-Engineer시험덤프 즉 문제와 답을 받으실 수 있습니다, Pss4Test Google Professional-Machine-Learning-Engineer덤프를 결제하면 바로 사이트에서Google Professional-Machine-Learning-Engineer덤프를 다운받을수 있고 구매한Google Professional-Machine-Learning-Engineer시험이 종료되고 다른 코드로 변경되면 변경된 코드로 된 덤프가 출시되면 비용추가없이 새로운 덤프를 제공해드립니다, Professional-Machine-Learning-Engineer덤프는 Professional-Machine-Learning-Engineer 시험문제의 모든 시험문제를 커버하고 있어 Google Professional Machine Learning Engineer덤프에 있는 내용만 공부하시면 아무런 걱정없이 Professional-Machine-Learning-Engineer시험에 도전할수 있습니다.
전화도 잘 안 받고, 율리어스는 참을성 있게 다시 한번 말했다, Google Professional-Machine-Learning-Engineer 시험을 합격하여 자격증을 손에 넣는다면 취직 혹은 연봉인상 혹은 승진이나 이직에 확실한 가산점이 될것입니다, Google인증 Professional-Machine-Learning-Engineer시험은 등록하였는데 시험준비는 아직이라구요?
Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 최신 시험은 저희 덤프로 패스가능
믿고 애용해주신 분들께 감사의 인사를 드립니다, Fast2test에서 최고최신버전의Google인증Professional-Machine-Learning-Engineer시험덤프 즉 문제와 답을 받으실 수 있습니다, Pss4Test Google Professional-Machine-Learning-Engineer덤프를 결제하면 바로 사이트에서Google Professional-Machine-Learning-Engineer덤프를 다운받을수 있고 구매한Google Professional-Machine-Learning-Engineer시험이 종료되고 다른 코드로 변경되면 변경된 코드로 된 덤프가 출시되면 비용추가없이 새로운 덤프를 제공해드립니다.
- Professional-Machine-Learning-Engineer인증시험자료 🦠 Professional-Machine-Learning-Engineer참고자료 🍚 Professional-Machine-Learning-Engineer유효한 시험대비자료 🤙 지금《 www.exampassdump.com 》을(를) 열고 무료 다운로드를 위해⏩ Professional-Machine-Learning-Engineer ⏪를 검색하십시오Professional-Machine-Learning-Engineer최고품질 인증시험 기출문제
- Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 인기자격증 덤프 🌎 ➠ www.itdumpskr.com 🠰을(를) 열고➠ Professional-Machine-Learning-Engineer 🠰를 입력하고 무료 다운로드를 받으십시오Professional-Machine-Learning-Engineer완벽한 시험덤프공부
- Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 덤프 최신버전 자료 🌹 지금{ www.itdumpskr.com }에서《 Professional-Machine-Learning-Engineer 》를 검색하고 무료로 다운로드하세요Professional-Machine-Learning-Engineer시험패스 인증덤프자료
- 최신 Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 인증덤프 샘플문제 다운로드 👼 ➥ www.itdumpskr.com 🡄을 통해 쉽게⇛ Professional-Machine-Learning-Engineer ⇚무료 다운로드 받기Professional-Machine-Learning-Engineer최고덤프데모
- Professional-Machine-Learning-Engineer최고품질 인증시험 기출문제 ⏬ Professional-Machine-Learning-Engineer시험대비 덤프 최신버전 🐣 Professional-Machine-Learning-Engineer최고품질 인증시험 기출문제 🕌 무료 다운로드를 위해☀ Professional-Machine-Learning-Engineer ️☀️를 검색하려면{ www.exampassdump.com }을(를) 입력하십시오Professional-Machine-Learning-Engineer Dumps
- 시험패스 가능한 Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 공부자료 🦕 ➡ www.itdumpskr.com ️⬅️에서“ Professional-Machine-Learning-Engineer ”를 검색하고 무료 다운로드 받기Professional-Machine-Learning-Engineer인증시험자료
- 최신 Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 인기 덤프문제 다운 😝 지금⏩ www.passtip.net ⏪에서{ Professional-Machine-Learning-Engineer }를 검색하고 무료로 다운로드하세요Professional-Machine-Learning-Engineer최고덤프데모
- Professional-Machine-Learning-Engineer시험대비 최신 덤프 👋 Professional-Machine-Learning-Engineer퍼펙트 덤프 최신 샘플 🎨 Professional-Machine-Learning-Engineer유효한 인증시험덤프 💑 ▶ www.itdumpskr.com ◀을 통해 쉽게「 Professional-Machine-Learning-Engineer 」무료 다운로드 받기Professional-Machine-Learning-Engineer퍼펙트 덤프 최신 샘플
- 시험패스 가능한 Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 공부자료 🍂 ⇛ kr.fast2test.com ⇚을(를) 열고➥ Professional-Machine-Learning-Engineer 🡄를 입력하고 무료 다운로드를 받으십시오Professional-Machine-Learning-Engineer시험패스 인증덤프자료
- Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 인기자격증 덤프 🛕 ➽ www.itdumpskr.com 🢪웹사이트를 열고➽ Professional-Machine-Learning-Engineer 🢪를 검색하여 무료 다운로드Professional-Machine-Learning-Engineer참고자료
- 최신 Professional-Machine-Learning-Engineer높은 통과율 시험대비 공부문제 인증시험 덤프자료 ⬛ ▛ www.itcertkr.com ▟웹사이트를 열고⮆ Professional-Machine-Learning-Engineer ⮄를 검색하여 무료 다운로드Professional-Machine-Learning-Engineer유효한 인증시험덤프
- shortcourses.russellcollege.edu.au, certificationpro.org, global.edu.bd, www.courses.clinthiggs.com, julianaosori8.blogspot.com, stevefi779.blogunteer.com, www.q55k.com, a.callqy.cn, lms.ait.edu.za, cou.alnoor.edu.iq